Acceso a usuarios
Bienvenid@

Tutores

MARIA ALEJANDRA BRAVO DE LA PARRA

Instituto de Biotecnología (IBT)

Contacto

Teléfono: 777 3291635
Email: alejandra.bravo@ibt.unam.mx
Sitio web: Visitar sitio web

Campos de conocimiento

Bioquímica
Biotecnología
Microbiología Molecular

Líneas de investigación

Proteínas insecticidas de Bacillus thuringiensis.
1. Aislamiento y diseño de nuevas toxinas Cry, Cyt y Vip3 insecticidas.
2.Estudio de su modo de acción y de los mecanismos de resistencia que los insectos han desarrollado.
3. Entender la sinergia entre estas toxinas para manipularla y hacer que funcione para otros ordenes de insectos.

Publicaciones

1. Wei, W., Pan, Sh., Ma, Y., Xiao, Y., Yang, Y., He, Sh., Bravo, A., Soberón, M.*, Liu, K.* 2020 GATAe transcription factor is involved in Bacillus thuringiensis Cry1Ac toxin receptor gene expression inducing toxin susceptibility. Insect Bioch. Mol. Biol. 118: e 103306 ISSN 0965-1748 doi.org/10.1016/j.ibmb.2019.103306 IF 4.06
2. Gong L, Kang Z, Zhou J, Sun D, Guo L, Qin J, Zhu L, Bai Y, Ye F, Mazarin A, Wu Q, Wang S, Xu B, Yang Z, Bravo A, Soberón M, Guo Z, Wen L, Zhang Y.* 2020 Reduced expression of a novel midgut trypsin gene involved in protoxin activation correlates with Cry1Ac resistance in a laboratory-selected strain of Plutella xylostella (L.). Toxins 12:76. doi: 10.3390/toxins12020076. ISSN 2072-6651 IF 4.2
3. Anaya, P., Onofre , J., Torres-Quintero, MC., Sánchez , J., Gill, SS., Bravo A., and Soberón M.* 2020 Oligomerization is a key step for Bacillus thuringiensis Cyt1Aa insecticidal activity but not for toxicity against red blood cells. Insect Biochem. Mol. Biol. 119:103317. doi: 10.1016/j.ibmb.2020.103317 ISSN 0965-1748 IF 4.06
4. Gómez I, Ocelotl J, Sánchez J, Aguilar-Medel S, Peña-Chora G, Lina-García L, Bravo A, Soberón M.* 2020. Bacillus thuringiensis Cry1Ab Domain III -22 Mutants with Enhanced Toxicity to Spodoptera frugiperda (J. E. Smith). Appl Environm Microbiol 86: e01580-20 ISSN 0099-2240 Doi: 10.1128/AEM.01580-20 IF 4.4
5. Jin M, Yang Y, Shan Y, Chakrabarty S, Cheng Y, Soberón M, Bravo A, Liu K, Wu K, Xiao Y* 2020 Two ABC transporters are differentially involved in the toxicity of two Bacillus thuringiensis Cry1 toxins to the invasive crop-pest Spodoptera frugiperda (J.E. Smith). Pest Managem. Sciences 77: 1492-1501 Doi 10.1002/ps.6170 ISSN: 1526-4998 IF 4.4
6. Onofre J, Pacheco S, Torres-Quintero MC, Gill SS, Soberón M and Bravo A.* 2020. The Cyt1Aa toxin from Bacillus thuringiensis inserts into target membranes via different mechanisms in insects, red blood cells, and lipid liposomes J. Biol. Chem. 295: 9606-9617 ISSN 0021-9258 doi: 10.1074/jbc.RA120.013869. IF 4.8
7. Pacheco S, Quiliche JPJ, Gómez I, Sánchez J, Soberón M and Bravo A.* 2020. Rearrangement of N-terminal α-Helices of Bacillus thuringiensis Cry1Ab toxin essential for oligomer assembly and toxicity. Toxins (Basel) 12: 647 doi 10.3390/toxins12100647. ISSN 2072-6651 IF 4.2
8. Shi J, Zhang F, Chen L, Bravo A, Soberón M, Sun M.* 2020. Systemic mitochondrial disruption is a key event in the toxicity of bacterial pore-forming toxins to Caenorhabditis elegans. Environm. Microbiol. 23: 4893-4907doi 10.1111/1462-2920.15376 ISSN 1462-2920 IF 5.1
9. Shu Ch, Yan G, Huang Sh, Geng Y, Soberón M, Bravo A, Geng L and Zhang J.* 2020. Characterization of two novel Bacillus thuringiensis Cry8 toxins reveal differential specificity of protoxins or activated toxins against Chrysomeloidea coleopteran superfamily. Toxins (Basel) 12: 642 doi 10.3390/toxins12100642 ISSN 2072-6651 IF 4.2
10. Wang Z, Wang K, Bravo A, Soberón M, Shu Ch, Zhang J.* 2020. Coexistence of cry9A and vip3A gene in an identical plasmid of Bacillus thuringiensis indicates their synergistic insecticidal toxicity. J. Agricul. Food Chem. 68: 14081-14090 ISSN 1520-5118 doi: 10.1021/acs.jafc.0c05304. IF 5.7
11. Zhang J, Jin M, Yang Y, Liu L, Yang Y, Gómez I, Bravo A, Soberón M, Xiao Y and Liu K.* 2020. The cadherin protein is not involved in susceptibility to Bacillus thuringiensis Cry1Ab or Cry1Fa toxins in Spodoptera frugiperda. Toxins (Basel) 12: 375 doi 10.3390/toxins12060375 ISSN 2072-6651 IF 4.2
12. do Nascimento, NA., Torres-Quintero, MC., López Molina, S., Pacheco, S., Romão, TP., Pereira-Neves, A., Soberón, M., Bravo, A., Neves Lobo Silva-Filha, MH.* 2020. Functional Bacillus thuringiensis Cyt1Aa is necessary to synergize Lysinibacillus sphaericus Binary toxin against Bin-resistant and refractory mosquito species. Appl Environm Microbiol.86: e02770-19. doi: 10.1128/AEM.02770-19. ISSN 1098- 5336 IF 4.4
13. Zheng, Z., Zhang, Y., Liu, Zh., Don, Zh., Xie, Ch., Bravo, A., Soberón, M., Mahillon, J., Sun, M., and Peng D.* 2020 The CRISPR-Cas systems were selectively inactivated during evolution of Bacillus cereus group for adaptation to diverse environments. The ISME J. 14: 1479-1493. doi: 10.1038/s41396-020-0623-5. IF 11
14. Yang Y., Huang X., Yuan W., Xiang, Y., Guo X., Wei, W., Soberón M., Bravo A., Liu K.* 2021. Bacillus thuringiensis Cry toxin triggers autophagy activity that may enhance cell death. Pest Biochem. Physiol. 171: 104728 doi: 10.1016/j.pestbp.2020.104728 ISSN 1095-9939 IF 4.9
15. Sena da Silva IH, Gómez I, Pacheco S, Sánchez J, Zhang J, Luque Castellane TC, Aparecida Desiderio J, Soberón M, Bravo A*, Polanczyk RA. 2021. Bacillus thuringiensis Cry1Ab Domain III -16 Is Involved in Binding to Prohibitin, Which Correlates with Toxicity against Helicoverpa armigera (Lepidoptera: Noctuidae). Doi 10.1128/AEM.01930-20 ISSN 1098- 5336 Appl. Enviromen. Microbiol. 87:e01930-20 IF 4.4
16. Wang Z, Gan Ch, Wang J, Bravo A, Soberón M, Yang Q, and Zhang J.* 2021. Nutrient conditions determine the localization of Bacillus thuringiensis Vip3Aa protein in the mother cell compartment. Microbiol. Biotech. 14: 551-560doi 10.1111/1751- 7915.13719 ISSN 1751-7915 IF 5.7
17. López-Molina S, do Nascimento NA, Silva-Filha MH NL, Guerrero A, Sánchez J, Pacheco S, Gill SS, Soberón M, Bravo A.* 2021 In vivo nanoscale analysis of the dynamic synergistic interaction of Bacillus thuringiensis Cry11Aa and Cyt1Aa toxins in Aedes aegypti. Plos Pathogens 17(1):e1009199. doi: 10.1371/journal.ppat.1009199. ISSN 1553-7366 IF 6.7
18. JL de Oliveira; L Fernandes-Fraceto; A Bravo; RA Polanczyk*. 2021 Encapsulation strategies for Bacillus thuringiensis: From now to the future. J. Agric. Food Chem. 69 (16), 4564-4577. doi.org/10.1021/acs.jafc.0c07118 ISSN 0021-8561; 1520-5118 IF 8.8
19. Jin M, Yang Y, Shan Y, Chakrabarty S, Cheng Y, Soberón M, Bravo A, Liu K, Wu K, Xiao Y* 2021. Two ABC transpòrters are differentialy involved in the toxicity of two Bacillus thuringiensis Cry1 toxins to the invasive crop-pest Spodoptera frugiperda (J.E. Smith). Pest Managem. Science 77: 1492-1501 IF 4.1
20. Liu Y, jin M, Wang L, Wang H, Xia Z, Yang Y,Bravo A, Soberón M, Xiao Y, Liu K.* 2021 SfABCC2 transporter extracellular loops 2 and 4 are responsible for the Cry1Fa insecticidal specificity against Spodoptera frugiperda. Insects Biochem. Mol. Biol. 135: 103608 doi: 10.1016/j.ibmb.2021.103608. ISSN 0965-1748 IF 4.06
21. Silva-Filha MH*, Romão TP, Rezende TMT, Carvalho KS, Menezes HSG, Nascimento NA, Soberón M, Bravo A. 2021 Bacterial toxins active against mosquitoes: mode of action and resistance. Toxins 13: 523 doi.org/10.3390/toxins13080523 IF 4.2
22. Zhang D., Jin M., Yang Y., Zhang J., Yang Y., Liu K., Soberón M., Bravo A., Xiao Y., Wu K*. 2021 Synergistic resistance of Helicoverpa armillera to Bt toxins linked to cadherin and ABC transporters mutations. Insect Biochem. Mol. Biol. 137: 103635. ISSN 0965-1748, doi: 10.1016/j.ibmb.2021.103635. IF 4.06
23. Xiao Y, Li W, Yang X, Xu P, Jin M, Yuan H, Zheng W, Soberón M, Bravo A, Wilson K, Wu K.* 2021 Rapid spread of a densovirus in a major crop pest following wide-scale adoption of Bt-cotton in China. eLife, 10: e66913 ISSN: 2050-084X doi 10.7554/eLife.66913 IF 8.7
24. Pacheco S, Gómez I, Chiñas M, Sánchez J, Soberón M, Bravo A.* 2021.Whole Genome Sequencing Analysis of Bacillus thuringiensis GR007 Reveals Multiple Pesticidal Protein genes. Frontiers Microbiol, Evolution & Genomic Microbiol. doi: 10.3389/fmicb.2021.758314 12: 758314 pag1-13 ISSN 1664-302X IF 5.2
25. do Nascimento J., Goncalves KC, Pinto-Dias N, de Oliveira JL, Bravo A, Polanczyk RA*, 2021. Adoption of Bacillus thuringiensis-based biopesticides in agricultural systems and new approaches to improve their use in Brazil. Biological Control, 104792, doi: 10.1016/j.biocontrol.2021.104792 ISSN 1049-9644 IF 4.2
26. Guo, Z., Kang, S., Wu, Q. Wang, S., Crickmore, N., Zhou, X., Bravo, A., Soberón, M., Zhang,Y.* 2021. The regulation landscape of MAPK signaling cascade for thwarting Bacillus thuringiensis infection in an insect host. PLoS Pathogens, 17, e1009917. ISSN: 1553-7374 IF 6.7
27. Xiao Y, Li W, Yang X, Xu P, Jin M, Yuan H, Zheng W, Soberón M, Bravo A,
Wilson K, Wu K* 2021. Rapid spread of a symbiotic virus in a major crop pest following wide-scale adoption of Bt-cotton in China. Elife 10:e66913. doi: 10.7554/eLife.66913. IF 8.7
28. Guo L, Cheng Z, Qin J, Sun D, Wang S, Wu Q, Crickmore N, Zhou X, Bravo A, Soberón M, Guo Z, Zhang Y*. 2022. MAPK-mediated transcription factor GATAd contributes to Cry1Ac resistance in diamondback moth by reducing PxmALP expression. PLoS Genetics 3;18(2):e1010037. doi: 10.1371/journal.pgen.1010037.eCollection 2022 Feb. IF 4.5
29. Ch Liao, M Jin, Y Cheng, Y Yang, M Soberón, A Bravo, K Liu, and Y Xiao*. 2022 Bacillus thuringiensis Cry1Ac protoxin and activated toxin exert differential toxicity due to a synergistic interplay of cadherin with ABCC transporters in the cotton bollworm Appl. Environm. Microbiol. 12;88(7):e0250521. doi: 10.1128/aem.02505-21. IF 4.4
30. Bravo A and Soberón M*. 2022 Mining versus in vitro evolution for the selection of novel microbial insecticidal proteins. Microbial Biotechnol. 15, 2518-2520. doi: 10.1111/1752-7915.14136. ISSN 1751-7915 IF 6.5
31. Guo Z, Guo L, Qin J, Ye F, Sun D, Wu Q, Wang S, Crickmore N, Zhou X, Bravo A, Soberón M, and Zhang Y*. 2022. A single transcription factor facilitates an insect host combating Bacillus thuringiensis infection while maintaining fitness. Nature Comm. 13:6024 doi.org/10.1038/s41467-022-33706-x ISSN: 2041-1723 IF 16.6
32. García-Gómez B.I., Sánchez T.A., Cano, S.N., do Nascimento, N.A., Bravo A., and Soberón, M*. 2023. Insect chaperones Hsp70 and Hsp90 cooperatively enhance toxicity of Bacillus thuringiensis Cry1A toxins and counteract insect resistance. Front. Immunol. 14, doi :10.3389/fimmu.2023.1151943 ISSN 1664-3224 IF 5.2
33. Pacheco S, Gómez I, Soberón M, Bravo A.* 2023 A major conformational change of N-terminal helices of Bacillus thuringiensis Cry1Ab insecticidal protein is necessary for membrane insertion and toxicity. FEBS J. 290: 2692-2705. https://doi.org/10.1111/febs.16710 ISSN 1742-4658 IF 5.5
34. Sun D, Zhu L, Guo L Wang Sh, Wu Q, Crickmore N, Zhou X, Bravo A, Soberón M, Guo Z and Zhang Y* 2022. A versatile contribution of both aminopeptidases N and ABC transporters to Bt Cry1Ac toxicity in the diamondback moth BMC Biology 20:33 https://doi.org/10.1186/s12915-022-01226-1 ISSN 1741-7007 IF 7.4
35. Pacheco S, Gómez I, Pelaéz-Aguilar AE, Verduzco-Rosas LA, García-Suárez R, do Nascimento, NA Rivera-Nájera LY, Cantón PE, Soberón M, Bravo A.* 2023 Structural changes upon membrane insertion of the insecticidal pore-forming toxins produced by Bacillus thuringiensis. Frontiers Insect Sci DOI 10.3389/finsc.2023.1188891 ISSN 2673-8600 IF 2.4
36. Wang K, Shu Ch, Bravo A, Soberón M, Zhang H, Crickmore N, Zhang J*. 2023. Development of an Online Genome Sequence Comparison Resource for Bacillus Cereus Sensu Lato Strains Using the Efficient Composition Vector Method. Toxins 15, 393. https:// doi.org/10.3390/toxins15060393 ISSN 2072-6651 IF 5.07
37. Chen F, Pang C, Zheng Z, Zhou W, Guo Zh, Du H, Bravo A, Soberón M, Sun M, and Peng, D. 2023. Aminopeptidase MNP-1 triggers intestine protease production by activating daf-16 nuclear location to degrade pore-forming toxins in Caenorhabditis elegans. PLOS Pathogens. 19(7):e1011507. https://doi.org/10.1371/journal.ppat.1011507 ISSN 1553-7374
38. Wei W, Wang L, Pana Sh, Wang H, Xia Zh, Liu L, Xiao Y, Bravo A, Soberon M, Yang Y*, Liu K*. 2023 Helicoverpa armigera GATAe transcriptional factor regulates the expression of Bacillus thuringiensis Cry1Ac receptor gene ABCC2 by its interplay with additional transcription factors. Pest Biochem Physiol 194:105516 https://doi.org/10.1016/j.pestbp.2023.105516 ISSN 1095-9939 IF 4.2
39. Velásquez CLF, Cantón PE, Sanchez-Flores A, Soberón M, Bravo* A. Cerón SJ. 2023 Identification of Cry toxin receptor genes homologs in a de novo transcriptome of Premnotrypes vorax (Coleoptera: Curculionidae). PLoS ONE, 18 (9), e0291546. ISSN 1932-6203 DOI: 10.1371/journal.pone.0291546 IF 2.9
40. Wang Z, Yang Y, Li S, Ma W, Wang K, Soberón M, Yan Sh, Shen J, Francis F, Bravo A, Zhang J. 2023 JAK/STAT signaling regulated intestinal regeneration defends insect pests against pore-forming toxins produced by Bacillus thuringiensis. PlosPathogens 20(1):e1011823. doi: 10.1371/journal.ppat.1011823. ISSN: 1553-7374 IF 5.5
41. He X, Yang Y, Soberón M, Bravo A, Zhang L, Zhang J, and Wang Z. 2024. Bacillus thuringiensis Cry9Aa Insecticidal Protein Domain I Helices α3 and α4 Are Two Core Regions Involved in Oligomerization and Toxicity J. Agricul. Food Chem. 72 (2), 1321-1329 DOI: 10.1021/acs.jafc.3c08070 IF 5.7
42. de Oliveira J. L., Gómez I., Sánchez J., Soberón M., Polanczyk R. A. and Bravo A*. 2024. Performance insights into spray-dryer microencapsulated Bacillusthuringiensis cry pesticidal proteins with gum arabic and maltodextrinfor effective pest control. Appl. Microbiol. Biotechnol. 108:181. https://doi.org/10.1007/s00253-023-12990-7 ISSN 0175-7598 IF 3.9
43. Huang G, Liu Z, Chen F, Bravo A, Soberón M, Zheng J, Peng D, Sun M. 2024 Cathepsin L-like protease is involved in embryogenesis, juvenile development and female fecundity in the potato rot nematode, Ditylenchus destructor. Scientific reports 14, 10030 (2024). https://doi.org/10.1038/s41598-024-60018-5 IF 3.8
44. Sun D, Xua Q, Guo L, Bai Y, Shentu X, Yu X, Crickmore N, Zhou X, Bravo A, Soberón M, Zhang Y, Guo Z. 2024 The role of GPI-anchored membrane-bound alkaline phosphatase in the mode of action of Bt Cry1A toxins in the diamondback moth. Fundamental Research. 27 May 2024. https://doi.org/10.1016/j.fmre.2024.05.007 In the Press IF 7.4
45. Pacheco, S., Gallegos, A.S., Peláez-Aguilar, A.E., Sánchez, J., Gómez, I., Soberón, M., Bravo, A. 2024 CRISPR-Cas9 Knockout of Membrane-Bound Alkaline Phosphatase or Cadherin Does Not Confer Resistance to Cry Toxins in Aedes aegypti. PLOS Negl Trop Dis 18(6):e0012256. doi: 10.1371/journal.pntd.0012256. IF 4.7
Circuito de Posgrado, Ciudad Universitaria
Alcaldía Coyoacán, C.P. 04510, México, CDMX

55 5623 7006
mdcbq@posgrado.unam.mx
UNAM Posgrado