Contacto
Campos de conocimiento
Biofísica
Reconocimiento Molecular y Bioestructura
Líneas de investigación
1) APLICACIÓN DE LA DINÁMICA MOLECULAR EN EL RECONOCIMIENTO BIOMOLECULAR
2) APLICACIÓN DE LAS RELACIONES CUANTITATIVAS ENTRE LA ESTRUCTURA Y LA ACTIVIDAD (QSAR) EN EL DISEÑO DE FÁRMACOS
Publicaciones
1) Boopathi, S., & Garduño-Juárez, R. (2024). A Small Molecule Impedes the Aβ1–42 Tetramer Neurotoxicity by Preserving Membrane Integrity: Microsecond Multiscale Simulations. ACS Chem. Neurosci. 15, 3496−3512. https://doi.org/10.1021/acschemneuro.4c00383 - FI 4.7
2) Garduño-Juárez, R., Tovar-Anaya, D. O., Perez-Aguilar, J. M., Lozano-Aguirre Beltran, L. F., Zubillaga, R. A., Alvarez-Perez, M. A., & Villarreal-Ramirez, E. (2024). Molecular dynamic simulations for biopolymers with biomedical applications. Polymers, 16(13), 1864. https://doi.org/10.3390/polym16131864 - FI 4.2
3) Montero-Domínguez, P. A., Mares-Sámano, S., & Garduño-Juárez, R. (2023). Insight on the interaction between the scorpion toxin blocker Discrepin on potassium voltage-gated channel Kv4. 3 by molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 41(13), 6272-6281. - FI 3.2
4) Boopathi, S., & Garduño‐Juárez, R. (2022). Calcium inhibits penetration of Alzheimer's Aβ1–42 monomers into the membrane. Proteins: Structure, Function, and Bioinformatics, 90(12), 2124-2143. FI 3.2
5) Campos‐Fernández, L., Ortiz‐Muñiz, R., Cortés‐Barberena, E., Mares‐Sámano, S., Garduño‐Juárez, R., & Soriano‐Correa, C. (2022). Imidazole and nitroimidazole derivatives as NADH‐fumarate reductase inhibitors: Density functional theory studies, homology modeling, and molecular docking. Journal of computational chemistry, 43(23), 1573-1595. - FI 3.4
6) Morales-Martínez, A., Bertrand, B., Hernández-Meza, J. M., Garduño-Juárez, R., Silva-Sanchez, J., & Munoz-Garay, C. (2022). Membrane fluidity, composition, and charge affect the activity and selectivity of the AMP ascaphin-8. Biophysical Journal, 121(16), 3034-3048. - FI 3.2
7) Morales-Martínez, A., Bertrand, B., Hernández-Meza, J. M., Garduño-Juárez, R., Silva-Sanchez, J., & Munoz-Garay, C. (2022). Effect of membrane lipid fluidity, composition, and charge on the ability of the antimicrobial peptide ascaphin-8 to insert into the membrane and form pores. Biophysical Journal, S0006-3495. - FI 3.2
8) Velasco-Bolom, J. L., & Garduño-Juárez, R. (2022). Computational studies of membrane pore formation induced by Pin2. Journal of Biomolecular Structure and Dynamics, 40(11), 5060-5068. - FI 3.2
9) JM Hernández-Meza, S Mares-Sámano, R Garduño-Juárez (2021). Insights into the Molecular Inhibition of the Oncogenic Channel KV10.1 by Globular Toxins. Journal of Chemical Information and Modeling (In Press). IF 4.549
10) B Bertrand, R Garduño-Juárez, C Munoz-Garay (2021). Estimation of pore dimensions in lipid membranes induced by peptides and other biomolecules: A review. Biochimica et Biophysica Acta (BBA)-Biomembranes, 183551. IF 3.411
11) JL Velasco-Bolom, R Garduño-Juárez (2021). Computational studies of membrane pore formation induced by Pin2. Journal of Biomolecular Structure and Dynamics (In Press). IF 3.549
12) B Bertrand, S Munusamy, JF Espinosa-Romero, G Corzo, IA Sosa, ... (2020). Biophysical characterization of the insertion of two potent antimicrobial peptides-Pin2 and its variant Pin2 [GVG] in biological model membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes 1862 (2), 183105. IF 3.411
13) JL Velasco-Bolom, G Corzo, R Garduño-Juárez (2020). Folding profiles of antimicrobial scorpion venom-derived peptides on hydrophobic surfaces: a molecular dynamics study. Journal of Biomolecular Structure and Dynamics 38 (10), 2928-2938. IF 3.549
14) Velasco-Bolom, J. L., Corzo, G., & Garduño-Juárez, R. (2018). Molecular dynamics simulation of the membrane binding and disruption mechanisms by antimicrobial scorpion venom-derived peptides. Journal of Biomolecular Structure and Dynamics, 36(8), 2070-2084. IF 3.123
15) Robles, J. P., Zamora, M., Velasco-Bolom, J. L., Tovar, M., Garduño-Juárez, R., Bertsch, T., ... & Clapp, C. (2018). Vasoinhibin comprises a three-helix bundle and its antiangiogenic domain is located within the first 79 residues. Scientific reports, 8(1), 17111. IF 4.525