Contacto
Campos de conocimiento
Biotecnología
Microbiología Molecular
Reconocimiento Molecular y Bioestructura
Líneas de investigación
Hemos trabajado en la identificación de moleculas de insectos susceptibles que medían la toxicidad de diferentes toxinas Cry producidas por Bt. Nuestros datos mostró que el modo de acción de estas toxinas es diferente explicando la efectividad de esta bacteria en el control de insectos y en evitar la evolución de resistencia. Sin embargo, todavía hay un vacio en el conocimineto del papel de the las diferentes proteínas del insecto en el modo de acción de diferentes toxinas Cry. La principal linea de investigación de nuestro laboratorio es en determinar las bases moleculares de la especificidad de las toxinas Cry. En particular el mapeo de los sitios de interacción en las toxinas y en los receptores para entender el mecanismo de especificifdad de estas toxinas. También en la identificación de receptores y el modo de acción de diferentes toxinas Cry con especificidad a diferentes ordenes de insecto como lepidopteros, coleopteros y dipteros.. Este conocimineto es fundamental para poder evolucionar la toxicidad y especificidad de estas proteínas.
Publicaciones
1. Likitvivatanavong, S., Chen, J., Bravo, A., Soberón, M., and Gill, S. S. (2011) Role of cadherin, alkaline phosphatase and aminopeptidase N as receptors of Cry11Ba toxin from Bacillus thuringiensis jegathesan in Aedes aegypti. Applied and Environmental Microbiology. 77: 24-31
2. Terenius, O. Papanicolaou, A. Garbutt, J.S. Eleftherianos, I. Huvenne, H. Sriramana, K. Albrechtsen, M. An, C. Aymeric, J.L. Barthel, A. Bebas, P. Bitra, K. Bravo, A. Chevalier, F. Collinge, D.P. Crava, C.M. de Maagd, R.A. Duvic, B. Erlandson, M. Faye, I. Felfoldi, G. Fujiwara, H. Futahashi, R. Gandhe, A.S. Gatehouse, H.S. Gatehouse, L.N. Giebultowicz, J. Gomez, I. Grimmelikhuijzen, C.J. Groot, A.T. Hauser, F. Heckel, D.G. Hegedus, D.D. Hrycaj, S. Huang, L. Hull, J.J. Iatrou, K. Iga, M. Kanost, M.R. Kotwica, J. Li, C. Li, J. Liu, J. Lundmark, M. Matsumoto, S. Meyering-Vos, M. Millichap, P.J. Monteiro, A. Mrinal, N. Niimi, T. Nowara, D. Ohnishi, A. Oostra, V. Ozaki, K. Papakonstantinou, M. Popadic, A. Rajam, M.V. Saenko, S. Simpson, R.M. Soberón M., Strand, M.R. Tomita, S. Toprak, U. Wang, P. Wee, C.W. Whyard, S. Zhang, W. Nagaraju, J. Ffrench-Constant, R.H. Herrero, S. Gordon, K. Swevers, L. Smagghe, G. (2011) RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. Journal of Insect Physiology. 57: 231-245
3. Rodriguez-Almazán, C., Ruiz de Escudero, I., Cantón, P. E., Muñóz-Garay, C., Pérez, C., Gill, S. S., Soberón, M., and Bravo, A. (2011) The amino- and carboxyl-terminal fragments of the Bacillus thuringiensis Cyt1Aa toxin have differential roles on toxin oligomerization and pore formation. Biochemistry. 50: 388-396
4. Porta, H., Cancino-Rodezno, A., Soberón, M., and Bravo, A. (2011) Role of MAPK p38 in the cellular responses to Pore Forming Toxins. Peptides. 32: 601-606
5. Cantón, P. E., Reyes, E. Z., Ruiz, I., Bravo, A. and Soberón, M. (2011) Binding of Bacillus thuringiensis subsp. israelensis Cry4Ba to Cyt1Aa has an important role in synergism. Peptides. 32: 595-600
6. Likitvivatanavong, S., Chen, J., Evans, A. E., Bravo, A., Soberón, M., and Gill, S. S. (2011) Multiple receptors as targets of Cry toxins in mosquitoes. Journal of Agricultural and Food Chemistry. 59: 2829-2838
7. Bravo, A., Likitvivatanavong, S., Gill, S. S., and Soberón, M. (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41: 423-431
8. Zavala, L. E., Pardo-López, L., Cantón, P. E., Gómez, I., Soberón, M., and Bravo, A. (2011) Domains II and III of Bacillus thuringiensis Cry1Ab toxin remain exposed to the solvent after insertion of part of domain I into the membrane. Journal of Biological Chemistry. 286: 19109-19117
9. Carmona, D., Rodríguez-Almazán, C., Muñoz-Garay, C., Portugal, L., Perez, C., de Maagd, R., Bakker, P., Soberón, M., and Bravo, A. (2011) Dominant negative phenotype of Bacillus thuringiensis Cry1Ab, Cry11Aa and Cry4Ba mutants suggest hetero-oligomer formation among different Cry toxins. Plos One 6, e19952.
10. Porta, H., Jiménez, G., Cordoba, E., León, P., Soberón, M., and Bravo, A. (2011) Tobacco plants expressing the Cry1AbMod toxin suppress tolerance to Cry1Ab toxin of Manduca sexta cadherin-silenced larvae. Insect Biochemistry and Molecular Biology. 41: 513-519
11. Porta, H., Muñóz-Minutti, C., Soberón, M., and Bravo, A. (2011) Induction of Manduca sexta Larvae Caspases Expression in Midgut Cells by Bacillus thuringiensis Cry1Ab Toxin. Psyche, vol. 2011, Article ID 938249, 7 pages. doi:10.1155/2011/938249
12. Tabashnik, B. E., Huang, F., Ghimire, M. N., Leonard, B. R., Siegfried, B. D., Randasamy, M., Yang, Y., Wu, Y., Gahan, L., Heckel, D. G., Bravo, A., and Soberón, M., (2011) Efficacy of genetically modified Bt toxins against insects with different mechanism of resistance. Nature Biotechnology. 29: 1128-1131
13. Rodríguez-Almazán, C., Reyes, E. Z., Zúñiga-Navarrete, F., Muñoz-Garay, C., Gómez, I., Evans, A. M., Likitvivatanavong, S., Bravo, A., Gill. S. S., and Soberón, M. (2012) Cadherin binding is not a limiting step for Bacillus thuringiensis subs. israelensis Cry4Ba toxicity to Aedes aegypti larvae. Biochemical Journal. 443: 711-717
14. Cancino-Rodezno, A., Lozano, L., Oppert, C., Castro, J. I., Lanz-Mendoza, H., Encarnación, S., Evans, A. E., Gill, S. S., Soberón, M., Jurat-Fuentes, J. L., and Bravo, A. (2012) Comparative proteomic analysis of Aedes aegypti larval midgut alter intoxication with Cry11Aa toxin from Bacillus thuringiensis. Plos One, 7, e37034
15. Jiménez, A. I., Reyes, E. Z., Cancino-Rodezno, A., Bedoya, L. P., Caballero-Flores, G. G., Muriel-Millan, L. F., Likitvivatanavong, S., Gill, S. S., Bravo, A., and Soberón, M. (2012) Aedes aegypti alkaline phosphatase ALP1 is a functional receptor of Bacillus thuringiensis Cry4Ba and Cry11Aa toxins. Insect Biochemistry and Molecular Biology. 42: 683-689.
16. Soberón, M., Rodriguez-Almazan, C., Muñóz-Garay, C., Pardo-López, L., Porta, H., Bravo, A. (2012) Bacillus thuringiensis Cry and Cyt mutants useful to counter toxin action in specific environments and to overcome insect resistance in the field. Pesticide Biochemistry and Physiology. 104: 111-117
17. Bravo, A., Gómez, I., Porta, H., García-Gómez, B. I., Rodriguez-Almazan, C., Pardo, L., and Soberón, M. (2013). Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microbial Biotechnlogy. 6: 17-26
18. Pardo-López, L., Soberón, M., Bravo, A. (2013) Bacillus thuringiensis insecticidal 3-domain Cry toxins: Mode of action, insect resistance and consequences for crop protection. FEMS Microbiology Reviews. 37: 3-22
19. Soberón, M., López-Díaz, J. A., and Bravo, A. (2013) Cyt toxins produced by Bacillus thuringiensis: A protein fold conserved in several pathogenic microorganims. Peptides. 41: 87-93.
20. Zúñiga-Navarrete, F., Gómez, I., Peña, G., Bravo, A., and Soberón, M. (2013) A Tenebrio molitor GPI-anchored alkaline phosphatase is involved in binding of Bacillus thuringiensis Cry3Aa to brush border membrane vesicles. Peptides. 41: 81-86
21. Bedoya-Pérez L. P., Cancino-Rodezno, A., Flores-Escobar, B., Soberón, M., and Bravo, A. (2013) Role of UPR pathway in defense response of Aedes aegypti against Cry11Aa from Bacillus thuringiensis. International Journal of Molecular Sciences. 14: 8467-8478.
22. Flores-Escobar, B., Rodríguez-Magadan, H., Bravo, A., Soberón, M., Gómez, I. (2013) Manduca sexta aminopeptidase-n and alkaline phosphatase have a differential role in the mode of action of Cry1Aa, Cry1Ab and Cry1Ac toxins from Bacillus thuringiensis. Applied and Environmental Microbiology. 79: 4543-4550.
23. López-Diaz, J. A., Cantón, P. A., Gill, S. S., Soberón, M., Bravo, A. (2013) Oligomerization is a key step in Cyt1Aa membrane insertion and toxicity but not necessary to synergize Cry11Aa toxicity in Aedes aegypti larvae. Environmental Microbiology. 15: 330-3039
24. García-Gómez, B. I., Sánchez, J., Martínez de Castro, D. L., Ibarra, J. E., Bravo, A., and Soberón, M. (2013). Efficient production of Bacillus thuringiensis Cry1AMod toxins under regulation of cry3Aa promoter and single cysteine mutations in the protoxin region. Applied and Environmental Microbiology. 79: 6969-6973.
25. Tabashnik, B. E., Fabrick, J. A., Unnithan, G. C., Yelich, A. J., Masson, L., Zhang, J., Bravo, A., and Soberón, M. (2013) Efficacy of genetically modified Bt toxins alone or in combinations against Pink Bollworm resistant to Cry1Ac and Cry2Ab. PLoS ONE. 8, e80496
26. Cantón, P. E., López-Díaz, J. A., Gill, S. S., Bravo, A., and Soberón, M. (2014) Membrane binding and oligomer membrane insertion are necessary but insufficient for Bacillus thuringiensis Cyt1Aa toxicity. Peptides. 53: 286-291
27. Portugal, L., Gringonten, J. L., Caputo, G. F., Soberón, M., Muñoz-Garay, C., Bravo, A. (2014) Toxicity and mode of action of insecticidal Cry1A proteins from Bacillus thuringiensis in an insect cell line, CF-1 Peptides. 53: 292-299
28. Gómez, I., Sanchez, J., Muñoz-Garay, C., Matus, V., Gill, S. S., Soberón, M., and Bravo, A. (2014) Bacillus thuringiensis Cry1A toxins are versatile-proteins with multiple modes of action: Two distinct pre-pores are involved in toxicity. Biochemical Journal. 459: 383–396.
29. Monnerat, R., Pereira, E., Teles, B., Martins, E., Praca, L., Quiroz, P., Soberón, M., Bravo, A., Ramos, F., and Soares, C. M. (2014). Synergistic activity of Bacillus thuringiensis toxins aginst Simulium spp larvae. Journal of Invertebrate Pathology. 121: 70-73
30. Chavez, C., Recio-Totoro, B., Flores-Escobar, B., Lanz-Mendoza, H., Soberón, M., and Bravo, A. (2015) Nitric oxide participates in the toxicity of Bacillus thuringiensis Cry1Ab toxin to Manduca sexta larvae. Peptides. 68: 134-139
31. Gómez, I., Flores, B., Bravo, A., and Soberón, M. (2015) Bacillus thuringiensis Cry1AbMod toxin counters tolerance associated with low cadherin expression but not that associated with low alkaline phosphatase expression in Manduca sexta. Peptides. 68: 130-133
32. Zúñiga-Navarrete, F., Gómez, I., Peña, G., Amaro, I., Ortíz, E., Becerril, B., Ibarra, J. E., Bravo, A., and Soberón, M. (2015) Identification of Bacillus thuringiensis Cry3Aa toxin Domain II loop 1 as the binding site of Tenebrio molitor cadherin repeat CR12. Insect Biochemistry and Molecular Biology. 59: 50-57
33. Monnerat, R., Martins, E., Macedo, C., Queiroz, P., Praça, L., Soares, C. M., Moreira, H., Grisi, I., Silva, J., Soberón, M., and Bravo, A. (2015) Evidence of field-evolved resistance of Spodoptera frugiperda to Bt corn expressing Cry1F in Brazil that is still sensitive to modified Bt toxins. Plos One. 10, e0119544.
34. Changlong Shu, C., Tan, S., Jiao Yin, Soberon M, Bravo, A., Liu, C., Geng, L., Song, F., Li, K., Zhang, J. (2015) Assembling of Holotrichia parallela (Dark Black Chafer) midgut tissue transcriptome and identification of midgut proteins that bind to Cry8Ea toxin from Bacillus thuringiensis. Applied Microbiology and Biotechnology. 99: 7209-7218
35. Tabashnik, B. E., Zhang, M., Fabrick, J. A., Wu, Y., Gao, M., Huang, F., Wei, J., Zhang, J., Yelich, A., Unnithan, G. C., Bravo, A., Soberón, M., Carrière, Y., and Li, X. (2015) Dual mode of action of Bt proteins: protoxin efficacy against resistant insects. Scientific Reports. 5, 15107