Acceso a usuarios
Bienvenid@

Tutores

SERGIO ROMERO ROMERO

Instituto de Fisiología Celular (IFC)

Contacto

Teléfono: +52 5556225644 Ext. 25644
Email: sromero@ifc.unam.mx
Sitio web: Visitar sitio web

Campos de conocimiento

Biofísica
Bioinformática
Bioquímica
Biotecnología
Reconocimiento Molecular y Bioestructura

Líneas de investigación

Diseño e Ingeniería de proteínas
Evolución de proteínas
Diseño de biosensores
Estabilidad y Plegamiento de proteínas
Biología estructural
Diseño de enzimas mediante modelos de lenguaje e métodos de inteligencia artificial

Publicaciones

S. Romero-Romero, A. Braun, T. Kossendey, N. Ferruz, S. Schmidt, B. Höcker. (2024): De novo design of triosephosphate isomerases using generative language models. bioRxiv. https://doi.org/10.1101/2024.11.10.622869

J-D. Malcor, N. Ferruz, S. Romero-Romero, S. Dhingra, V. Sagar, A. A. Jalan. (2024): Code for collagen folding deciphered. bioRxiv. https://doi.org/10.1101/2024.02.24.581883

J-S. Koch, S. Romero-Romero, B. Höcker. (2024): Stepwise introduction of stabilizing mutations reveals nonlinear additive effects in de novo TIM barrels. Protein Science. 33(3): e4926. https://doi.org/10.1002/pro.4926. IF: 8.0

Romero-Romero, S., Lindner, S., Ferruz, N. (2023): Exploring the Protein Sequence Space with Global Generative Models. Cold Spring Harbor Perspectives in Biology, 15(11): a041471. https://doi.org/10.1101/cshperspect.a041471. IF: 10.1

F. Michel, S. Romero-Romero, B. Höcker. (2023): Retracing the evolution of a modern periplasmic binding protein. Protein Science. 32(11): e4793. https://doi.org/10.1002/pro.4793. IF: 8.0

A. A. Jalan, L. Hassine, S. Romero-Romero, J. Hübner, K. Schweimer, B. Höcker. (2023): Hydrophobic clusters direct folding of a synthetic chimeric protein. bioRxiv. https://doi.org/10.1101/2023.09.29.560087

R. Vergara, T. Berrocal, E. I. Juárez-Mejía, S. Romero-Romero, I. Velázquez-López, N. O. Pulido, H. A. López-Sánchez, D. A. Silva, M. Costas, A. Rodríguez-Romero, R. Rodríguez-Sotres, A. Sosa-Peinado, D. A. Fernández-Velasco. (2023): Thermodynamic and kinetic analysis of the LAO binding protein and its isolated domains reveal non-additivity in stability, folding and function. The FEBS Journal. 290(18): 4496-4512. https://doi.org/10.1111/febs.16819. IF: 5.4

F. Michel, S. Shanmugaratnam, S. Romero-Romero, B. Höcker. (2023): Structures of permutated halves of a modern ribose binding protein. Acta Crystallographica Section D. Structural Biology. 79(Pt 1): 40-49. https://doi.org/10.1107/S205979832201186X. IF: 2.2

S. Kordes, S. Romero-Romero, L. Lutz, B. Höcker. (2021): A newly introduced salt bridge cluster improves structural and biophysical properties of de novo TIM barrels. Protein Science. 31: 513-527. https://doi.org/10.1002/pro.4249. IF: 8.0

S. Romero-Romero, M. Costas, D-A. Silva-Manzano, S. Kordes, E. Rojas-Ortega, C. Tapia, Y. Guerra, S. Shanmugaratnam, A. Rodríguez-Romero, D. Baker, B. Höcker, D. A. Fernández-Velasco. (2021): The stability landscape of de novo TIM barrels explored by a modular design approach. Journal of Molecular Biology. 433(18): 167153. https://doi.org/10.1016/j.jmb.2021.167153. IF: 6.2

S. Romero-Romero, S. Kordes, F. Michel, B. Höcker. (2021): Evolution, folding, and design of TIM barrels and related proteins. Current Opinion in Structural Biology. 68: 94-104. https://doi.org/10.1016/j.sbi.2020.12.007. IF: 6.8

J. García-García, R. Sánchez-Thomas, E. Saavedra, D. A. Fernández-Velasco, S. Romero-Romero, K. I. Casanova-Figueroa, D. G. Mendoza-Cózatl, R. Moreno-Sánchez. (2020): Mapping the Metal-Catalytic site of a zinc-activated Phytochelatin Synthase. Algal Research. 47(1): 101890. https://doi.org/10.1016/j.algal.2020.101890. IF: 5.1

R. Vergara, S. Romero-Romero, I. Velázquez-López, G. Espinoza-Pérez, A. Rodríguez-Hernández, N. Pulido, A. Sosa-Peinado, A. Rodríguez-Romero, D. A. Fernández-Velasco. (2020): The interplay of protein-ligand and water-mediated interactions shape affinity and selectivity in the LAO binding protein. The FEBS Journal. 287(4): 763-782. https://doi.org/10.1111/febs.15019. IF: 5.4

S. Romero-Romero, Gustavo Martínez-Delgado, D. Balleza. (2019): Voltage vs. Ligand II: Structural insights of the intrinsic flexibility in cyclic nucleotide-gated channels. Channels. 13(1): 382-399. https://doi.org/10.1080/19336950.2019.1666456. IF: 3.3

D. Balleza, M. E. Rosas, S. Romero-Romero. (2019): Voltage vs. Ligand I: Structural basis of the intrinsic flexibility of S3 segment and its significance in ion channel activation. Channels. 13(1): 455-476. https://doi.org/10.1080/19336950.2019.1674242. IF: 3.3

G. R. Cristóbal-Mondragón, B. Lara-Chacón, A. Santiago, V. De-la-Rosa, R. González-González, J. A. Muñiz-Luna, E. Ladrón-de-Guevara, S. Romero-Romero, G. E. Rangel-Yescas, D. A. Fernández-Velasco, L. D. Islas, N. Pastor, R. Sánchez-Olea, M. R. Calera. (2019): FRET-based analysis and molecular modeling of the human GPN-loop GTPases 1 and 3 heterodimer unveils a dominant-negative protein complex. The FEBS Journal. 286(23): 4797-4818. https://doi.org/10.1111/febs.14996. IF: 5.4

E. Castro-Torres, P. Jiménez-Sandoval, S. Romero-Romero, A. Fuentes-Pascacio, L. M. López-Castillo, C. Díaz-Quezada, D. A. Fernández-Velasco, A. Torres-Larios, L. G. Brieba. (2019): Structural basis for the modulation of plant cytosolic triosephosphate isomerase activity by mimicry of redox-based modifications. The Plant Journal. 99(5): 950-964. https://doi.org/10.1111/tpj.14375. IF: 7.1

S. Romero-Romero, L. A. Becerril-Sesín, M. Costas, M, A. Rodríguez-Romero, D. A. Fernández-Velasco. (2018): Structure and conformational stability of the triosephosphate isomerase from Zea mays. Comparison with the chemical unfolding pathways of other eukaryotic TIMs. Archives of Biochemistry and Biophysics, 658: 66–76. https://doi.org/10.1016/j.abb.2018.09.022. IF: 3.4

A. G. Quezada, N. Cabrera, Á. Piñeiro, A. J. Díaz-Salazar, S. Díaz-Mazariegos, S. Romero-Romero, R. Pérez-Montfort, M. Costas. (2018): A strategy based on thermal flexibility to design triosephosphate isomerase proteins with increased or decreased kinetic stability. Biochemical and Biophysical Research Communications, 503(4): 3017–3022. https://doi.org/10.1016/j.bbrc.2018.08.087. IF: 3.3

E. Barrios-Villa, P. Lozano-Zaraín, G. Cortés-Cortés, S. Romero-Romero, N. LaraFlores, V. Estepa, S. Somalo, C. Torres, R. Rocha-Gracia. (2018): Characterization of extended-spectrum and CMY-2 β-lactamases, and associated resistance genes in Escherichia coli from food of animal origin in México. British Food Journal. 120(7): 1457-1473. https://doi.org/10.1108/BFJ-02-2018-0104. IF: 3.4

S. Romero-Romero, D. A. Fernández-Velasco, M. Costas. (2018): Estabilidad termodinámica de proteínas (Thermodynamic stability of proteins). Educación Química. 29(3): 3-17. https://doi.org/10.22201/fq.18708404e.2018.3.64699. IF: 1.1

I. Velázquez-López, G. Valdés-García, S. Romero Romero, R. Maya Martínez, A. Leal-Cervantes, M. Costas, R. Sánchez-López, C. Amero, N. Pastor, D. A. Fernández Velasco. (2018): Localized conformational changes trigger the pH-induced fibrillogenesis of an amyloidogenic λ light chain protein. Biochimica et Biophysica Acta. General Subjects, 1862(7): 1656–1666. https://doi.org/10.1016/j.bbagen.2018.04.014. IF: 4.2

S. Romero-Romero, F. Gomez Lagunas, D. Balleza. (2017): Side chain flexibility and coupling between the S4-S5 linker and the TRP domain in thermo-sensitive TRP channels: Insights from protein modeling. Proteins: Structure, Function, and Bioinformatics, 85(4): 630–646. https://doi.org/10.1002/prot.25243. IF: 2.9

S. Romero-Romero, M. Costas, A. Rodríguez-Romero, D. A. Fernández-Velasco. (2015): Reversibility and two state behaviour in the thermal unfolding of oligomeric TIM barrel proteins. Physical Chemistry Chemical Physics: PCCP, 17(32): 20699–20714. https://doi.org/10.1039/c5cp01599e. IF: 3.7

R. Rocha-Gracia, E. Ruiz, S. Romero-Romero, P. Lozano-Zarain, S. Somalo, J. M. Palacios-Hernández, P. Caballero-Torres, C. Torres (2010): Detection of the plasmid-borne quinolone resistance determinant qepA1 in a CTX-M-15-producing Escherichia coli strain from Mexico. The Journal of Antimicrobial Chemotherapy, 65(1): 169–171. https://doi.org/10.1093/jac/dkp418. IF: 5.5
Circuito de Posgrado, Ciudad Universitaria
Alcaldía Coyoacán, C.P. 04510, México, CDMX

55 5623 7006
mdcbq@posgrado.unam.mx
UNAM Posgrado